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Purpose: To develop and evaluate a complete deep learning pipeline that allows fully automated end-diastolic left 
ventricle (LV) cardiac MRI segmentation including trabeculations and automatic quality control of the predicted
segmentation. 

Materials and Methods: This multicenter retrospective study includes training, validation, and testing datasets of 
272, 27, and 150 cardiac MRI, respectively, collected between 2012 and 2018. The reference standard was the 
manual segmentation of four LV anatomic structures performed on end-diastolic short-axis cine cardiac MRI: LV 
trabeculations (LVT), LV myocardium (LVM), LV papillary muscles, and the LV blood cavity (LVC). The 
automatic pipeline was composed of five steps using a DenseNet architecture. Intraobserver agreement, 
interobserver agreement, and interaction time were recorded. The analysis includes the correlation between the 
manual and automated segmentation, a reproducibility comparison and Bland-Altmann plots. 
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Results: The automated method achieved Dice coefficients of 0.96 ± 0.01 for LVC, 0.89 ± 0.03 for LVM., and 0.62 
± 0.08 for LVT (mean absolute error: 3.63 g ± 3.4). Automatic quantification of LV end-diastolic volume, LVM 
mass, LVT, and trabeculation-mass-to-total-myocardial-mass ratio (T/TMM) showed a significant correlation with 
the manual measures (r = 0.99, 0.99, 0.90, and 0.83, respectively; all P < .01). On a subset of 48 patients, LVT Dice 
was 0.63 ± 0.10 and higher compared with the human interobserver (0.44 ± 0.09; P < .01) and intraobserver 
measures (0.58 ± 0.09; P < .01). Automatic quantification of the T/TMM had a higher correlation (0.92) compared 
with the intra-and interobserver measures (0.74, and 0.39, respectively; both P < .01). 

Conclusion: Automated deep learning framework can achieve reproducible and quality-controlled segmentation of 
cardiac trabeculations outperforming inter-and intraobserver analyses. 

A fully automated deep learning pipeline was developed to produce fast, reproducible, and 
automated quality-controlled left ventricle volume, mass, and trabeculation segmentation on 
short-axis cardiac MRI, to define the diagnostic criteria of excess of trabeculations. 

Abbreviations 
CNNs = convolutional neural networks, DCM = dilated cardiomyopathy, DFCNNs = 
dense fully convolutional neural networks, ET = excessive trabeculation, ETCM = 
excessive trabeculation cardiomyopathy, HCM = hypertrophic cardiomyopathy, LV = left 
ventricle, LVC = left ventricle blood cavity, LVEDV = left ventricle end-diastolic volume, 
LVM = left ventricle myocardium label, LVMM = left ventricle myocardial mass, LVPM = 
left ventricle papillary muscles, LVT = left ventricle trabeculation, MAE = mean absolute 
error, MVSF = mean volume similarity fraction, T = trabeculation mass, T/TMM = 
trabeculation-mass-to-total-myocardial-mass ratio 

Key Points 
A deep learning pipeline, based on a convolutional neural network, achieved segmentation Dice 
scores of 0.96 ± 0.01 for the left ventricular (LV) cavity, 0.89 ± 0.03 for the LV myocardium and 
0.62 ± 0.08 the LV trabeculations. On a subset of 48 patients, the automated method achieved 
superior Dice scores for trabeculation segmentation (0.63 ± 0.10) compared with human 
intraobserver (0.58 ± 0.09, P < .01) and interobserver measures (0.44 ± 0.09; P < .01). 
For the clinical parameters, automated computation of the ratio of trabeculation mass over the 
total myocardial mass showed higher correlation with the reference method compared with 
human intra-and interobserver measures (0.92 versus 0.74 [P < .01] and 0.39 [P < .01], 
respectively). 
The pipeline includes automatic quality control and showed a high classification accuracy of 
94.5% with a three-dimensional Dice coefficient mean absolute error of 0.05 ± 0.06 for the 
trabeculation segmentation. 
Conflicts of interest are listed at the end of this article. 

Trabeculations are a physiologic component of the human left ventricle (LV). Excessive LV 
trabeculations are observed in both pediatric and adult populations (1). However, controversies 
remain regarding the incidence, embryogenesis, physiopathology, classification, genetically 
associated disorders, diagnosis, and prognosis of excessive trabeculations (ET) (2). Several 
authors recommend the use of the term excessive trabeculation cardiomyopathy (ETCM) rather 
than LV noncompaction. Noncompaction implies a defect of the embryologic process during 
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myocardial compaction, which remains uncertain (3). ETCM has been described in a wide 
variety of clinical and pathophysiological situations (4). Initially, it was mostly described in 
association with dilated cardiomyopathy (DCM) (5). However, many authors showed that an ET 
myocardial phenotype could be found in other clinical patterns such as hypertrophic 
cardiomyopathy (HCM), cardiac congenital diseases, as well as in health patients (4,6,7). 

Cardiac MRI is the most reproducible diagnostic tool to explore ET phenotypes (8). 
Several parameters are described to reach a diagnosis, including the assessment of the 
noncompacted-to-compacted thickness ratio using end-diastolic cine cardiac MRI to define the 
ET phenotype (9), quantification of the whole LV trabecular mass (although that technique was 
too time consuming for broad use in clinical practice) (10), and more recently, new criteria have 
been proposed based on fractal dimensions (11). The definition of ETCM is still controversial 
due to the variability in clinical presentation and various diagnostic criteria. Moreover, 
trabeculations have a substantial impact on LV volume, mass, and ejection fraction 
measurements (12). Hence, there is a need for a fast, reproducible, and fully automated LV 
trabeculation segmentation method that can be used on a large cohort to facilitate the diagnosis 
of ETCM and to assess the impact of ET on patient prognosis. 

Deep learning techniques, notably with the use of convolutional neural networks (CNNs), 
are very promising in the automation of fastidious measurements in medical imaging (13). These 
techniques, based on multilayer neural networks, are capable of learning and building 
hierarchical representation of data (14). They have demonstrated great capabilities, often 
outperforming humans on image segmentation tasks (15). Numerous publications have validated 
the interest and effectiveness of CNNs for the segmentation of the short-and long axis left and 
right ventricles for the myocardium, papillary muscles, or blood pool (16–18). The goal of the 
study was to develop and evaluate a complete deep learning pipeline that allows (a) fully 
automated end-diastolic LV segmentation including trabeculations, (b) automatic quality control 
of the predicted segmentation results, and (c) computation of LV clinical parameters. 

Materials and Methods 

Data Sources and Patient Descriptions 
This multicenter retrospective study was approved by the local Institutional Review Board in 
accordance with the guidelines outlined in the Declaration of Helsinki. The study was approved 
by a French national ethical committee (N° IRB CRM-1907–02è). 

Training dataset.— 
We retrospectively selected a sample of 299 cardiac MRI examinations performed between 
October 2012 and November 2018 at three different French university hospitals (CHU Rouen, 
CHU Dijon, and CHU Marseille). The inclusion criterion was age between 18 and 85 years old. 
The exclusion criteria were congenital heart disease defined by the International Pediatric and 
Congenital Cardiac Code (19), ventricular postischemic remodeling, known amyloidosis, or iron 
overload. All the patients were classified depending on four cardiac phenotypes (healthy, DCM, 
HCM, or ETCM) by an experienced investigator (A.J. with 20 years of experience in cardiac 
imaging) to train the model in all situations where ET can be found (20). Healthy participants 
were included if the patients had no known risk factors or history of cardiac disease, no cardiac 
symptoms, and normal cardiovascular examination and parameters results. DCM, HCM and 
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ETCM used criteria are detailed in Appendix A3 (9,21,22). The dataset was randomly divided 
into a training set (n = 272) and a validation set (n = 27). A flow diagram of the procedure is 
shown in Figure 1. 

External testing dataset.— 
We retrospectively selected 150 consecutive cardiac MRI examinations, performed between 
November 2018 and April 2019, at three clinical hospitals to provide external validation of our 
model: 50 examinations each from the Cardiologic Hospital (Lille, France), Croix-Rousse 
Hospital (Lyon, France), and our institution (Marseille, France). The data were extracted from 
consecutive clinical care. The inclusion criteria, exclusion criteria, and cardiac phenotype 
classifications were similar to those in the training dataset with a predefined objective to include 
90 healthy individuals and 20 patients each with DCM, HCM and ETCM. To assess the inter-and 
intraobserver reproducibility for the LV technical and clinical parameters, we established a 
dedicated subset of 48 examinations which represents approximately the third of the test sample 
(n = 150, 90 healthy; 60 cardiomyopathies). To preserve the original balance of the testing 
dataset between healthy and nonhealthy subjects, we randomly selected 30 healthy patients 
among the 90, and 18 patients with cardiomyopathies among the 60. We obtained 5 patients with 
ETCM, 5 with DCM and 8 with HCM. 

Cardiac MRI Data 
The cardiac MRI examinations were performed on two different types of scanners. One scanner 
was a 1.5T Ingenia scanner (Philips Health System, Best, the Netherlands) and a 1.5T Avanto 
scanner (Siemens Healthcare, Erlangen, Germany) using a multichannel body array coil 
combined with a spine array coil with the patients in a supine position. A stack of images using 
balanced steady-state-free precession sequence was acquired. Only the ED frame at each 
imaging level was retained (8). The patient records and information were deidentified prior to 
analysis. 

Manual Segmentation and Reference Measures 
Manual image segmentation was undertaken for the complete training and testing datasets by a 
fellowship-trained observer (Observer 1 was A.B., 5 years of experience in cardiac imaging). 
Manual segmentation and the derived clinical measures were considered the reference standard 
to train the model (training) and to evaluate its performance (testing). For each cardiac MRI, all 
the ED images of the short-axis stack were imported in Digital Imaging and Communications in 
Medicine format. Reference manual segmentation was performed on a postprocessing software 
developed by Bricq et al and previously validated (23–25). The LV structures were manually 
segmented to obtain four labels (23): blood cavity (LVC), myocardium (LVM), papillary 
muscles (LVPM), and trabeculations (LVT). The nonsegmented part of the image was 
considered a fifth label: background (Fig 2). The clinical parameters from manual segmentation 
were obtained as follows: LV end-diastolic volume (LVEDV) extracted from the LVC label, the 
LV myocardial mass (LVMM) extracted from the LVM label, the papillary muscles mass (PM) 
extracted from the LVPM label and the trabeculation mass (T) extracted from the LVT label. The 
total myocardial mass (TMM) was calculated as the sum of the papillary, myocardial muscle, 
and trabeculation masses. The trabeculation-mass-to-total-myocardial-mass ratios (T/TMMs) are 
expressed as a percentage. The user interaction time was recorded for manual segmentation. 
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Model Architecture and Pipeline 
The complete pipeline (Fig 3) was composed of five steps: basal to end-apical LV stack selection 
(step 1), LV detection and cropping (step 2), LV structure automatic segmentation (step 3), 
automatic quality control as in (27) (step 4) and computation of clinical parameters from the 
predicted segmentations (step 5).Dense fully CNNs (DFCNNs), similarly to those used by 
Khened et al were used (26). DFCNN has a DenseNet based architecture and contains way less 
parameters and tends to overfit less than U-Nets. 

All the details regarding the dedicated dataset used and the network architecture of each 
step are presented in Appendices A and B, respectively. The details about image preprocessing, 
training parameters and images postprocessing are presented in Appendices C, D, and E 
respectively. 

Performance Evaluation 
The details regarding the evaluation of the preliminary steps 1 and 2 are presented in Appendix 
F. 

Evaluation of the LV Segmentation and Obtained Clinical Parameters 
To assess the segmentation accuracy, the automatic segmentation results were compared with the 
manual segmentations for the technical metrics and clinical parameters. We used Dice 
coefficients as a technical metric. The Dice coefficient measures the overlapping region between 
the predicted and manual contours (28). Dice coefficient and clinical parameters measures were 
presented in mean measures with standard deviation. The efficiency, defined as the user 
interaction time comparison was also evaluated. The reproducibility of the automatic method 
was compared with the inter-and intraobserver segmentation performances. The segmentation 
performed by Observer 1 on the 48 patients randomly extracted from the testing dataset was 
defined as manual 1a. Observer 1 performed a second analysis called manual 1b at least 1 month 
after the first segmentation, in randomized order to minimize the recall bias. A second 
independent observer (A.J.) performed segmentation on the same dataset of 48 patients, called 
manual 2. The observers were blinded to the patient characteristics (age, sex, and cardiac 
phenotype), the results from the other observers, and the reference segmentations. To assess the 
additional value of the 3D CNN in the model, the LVT Dice was measured separately for 3D 
DFCNNs, 2D DFCNNs and the combination of 2D and 3D DFCNNs on the 48 patients of the 
testset. 

Evaluation of the Automatic Quality Control 
The precision of the automatic quality control module was evaluated by predicting the Dice 
coefficient on a test set of 402 unseen 3D-segmented patients and comparing it with the 
reference Dice coefficient for all the classes. The main goal was to predict the quality of the LVT 
classification. The testing set was stratified using the LVT Dice coefficient with an equal number 
of cases in each of the following ranges of the LVT Dice score: 0–0.2, 0.3–0.4, 0.4–0.5, 0.5–0.6, 
0.6–0.7 and 0.7–1. 

Statistical Analysis 
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For the clinical parameters (LVEDV, LVMM, PM, T, and T/TTM), we reported the mean 
absolute errors (MAEs) and biases of the measures derived from automatic segmentation with 
the measures derived from manual. To establish significance of the biases, Wilcoxon signed-rank 
tests were used whenever the data within the subgroups were not distributed normally. 
Subgroups analyses were performed for each cardiac phenotype group also using Wilcoxon 
signed-rank tests, as each group had at least 20 patients. The manual and automatic clinical 
parameters were also compared by means of linear regression to determine the correlations. For 
efficiency, we used a two-factor repeated analysis of variance. The automatic segmentation 
performance was compared with the manual segmentation performances using paired t tests for 
the Dice coefficients. The following comparisons were performed: (a) manual 1a versus 
automatic, (b) manual 1a versus manual 1b, and (c) manual 1a versus manual 2. Bland-Altman 
plots were calculated to assess the bias and limits of agreement between the manual and 
automatic contours. 

To evaluate the performance of the automatic quality control module, we reported the 
MAE between automated predicted values and the manually delineated reference values and the 
classification accuracy of binary Dice threshold prediction (the thresholds were 0.7, 0.7, 0.35 and 
0.4 for the LVM, LVC, LVT, and LVPM respectively). A P value < 0.01 was considered 
statistically significant. 

Code Availability Statement 
The present code is protected (DSO2019018721) and could be shared upon the signature of a 
collaboration agreement. 

Results 
The patient characteristics and clinical parameters for the training, testing, and reproducibility 
datasets extracted from the manual reference-standard segmentation are shown in Table 1. The 
manual and automatic segmentation contours of the cardiac labels for the different cardiac 
phenotypes are shown in Figure 4. The results of LV stack selection and LV center detection and 
cropping are presented in Appendix E. 

Automatic Quality Control Module Accuracy 
The results are presented in Table 2. For the LVT, 3D Dice MAE was 0.05 ± 0.06, with a 
classification accuracy of 94.5%. For the LVM and LVC classes, the MAEs were 0.03 ± 0.03 
and 0.02 ± 0.02, with binary threshold classification accuracies of 97.2% and 96.5%, 
respectively. 

LV Segmentation Accuracy 
The Dice coefficients and clinical parameters for the automatic and manual segmentation results 
evaluated on the testing dataset are shown in Table 3. The correlations between the automatic 
and manual measurements of the clinical parameters on the whole test set are presented on 
Figure 5. The Dice coefficient was 0.96 ± 0.01 for the LVC, 0.89 ± 0.03 for the LVM, 0.79 ± 
0.11 for the LVPM, and 0.62 ± 0.08 for the LVT in the overall dataset. In the subgroups analysis 
for ETCM patients, the Dice coefficient for the LVT was 0.66 ± 0.08 between the manual and 
automatic segmentations. The LVC Dice was always greater than 0.96 in the overall and 
subgroups analyses. 
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Concerning the clinical parameters, the MAEs for the LVEDV values ranged from 4.90 ± 
4.5 mL for the healthy subgroup to 9.45 ± 7.5 mL for the ETCM subgroup, with an MAE of 5.86 
± 5.8 mL for the overall test set. The biases for the LVEDV ranged from 0.2 ± 6.6 mL for the 
healthy subgroup to 2.7 ± 12.1 mL for the DCM subgroup and 0.4 ± 8.3 mL for the whole 
cohort; none of the biases were found to be significant. The manual and automated 
measurements correlated strongly with correlation coefficients between 0.99 for the healthy 
subgroup to 0.99 for the ETCM subgroup and 0.99 globally. 

For the LVMM, the overall MAE was 9.46 ± 7.3 g with a bias of 6.3 ± 10.2 g (P < .01). 
In terms of the correlation, all measurements for LVMM were highly accurate with values 
greater than 0.97 for all subgroups and 0.99 overall. 

For the T measure, the MAEs ranged from 2.60 ± 2.0 g for the healthy group to 6.79 ± 
5.0 g for the ETCM group with an overall MAE of 3.63 ± 3.4 g. The biases ranged from 0.7 ± 
3.2 g for the healthy group to 3.7 ± 7.7 g for the ETCM group and were not found to be 
significant for the ETCM, DCM and healthy groups. The overall correlation was estimated to be 
0.90. 

Concerning the T/TMM measure, the MAE was 1.95% ± 1.5% for the overall group, 
ranging between 1.32% ± 1.0% for the HCM group to 2.94% ± 1.7% for the ETCM group in the 
subgroup analysis. No biases were found to be significant, ranging from-0.3% ± 2.3% for the 
healthy group to 0.9% ± 2.4% for the DCM subgroup with a mean value of-0.5% ± 2.4% for 
the whole test set. The overall correlation between the automatic and manual measures was 0.83. 
Figure 5 shows a fitted linear regression line (slope: 0.908; intercept: 1.321; R2:0.687) for this 
measure. 

In terms of the segmentation efficiency, the mean interaction time was 15 ± 3.6 minutes 
per patient for complete LV manual segmentation. The mean interaction time was 5 seconds to 
automatically assess the segmentation for 50 patients. 

LV Segmentation Reproducibility 
Table 4 reports the comparison of the model performances in terms of the Dice coefficient and 
clinical parameters (MAE and bias) with the intra-and interobserver agreement measures. For the 
LVT group, the Dice coefficient for the automatic compared with manual 1a was 0.63 ± 0.10 and 
was higher compared with intra-and interobserver agreement (0.58 ± 0.09; P < .01 and 0.44 ± 
0.09; P < .01, respectively). Furthermore the LVT Dice with the presented combined 2D and 3D 
DFCNNs (0.63 ± 0.10) was higher than the LVT Dice measure using 2D DFCNNs (0.62 ± 0.10; 
P = .08) or 3D DFCNNs (0.62 ± 0.10; P < .01). 

For T, the MAE was 1.70 g ± 1.30 (bias: 0.5 g ± 2.1) for automatic versus manual 1a, 
3.54 g ± 2.4 (bias:-1.7 g ± 3.9) for the manual intraobserver agreement and 5.84 g ± 4.5 (bias: 1.0 
g ± 7.3) for the interobserver agreement. The T measure correlation scores (0.95) were superior 
to both the intraobserver (0.82; P < .01) and interobserver (0.38; P < .01) agreement scores (P). 
The T/TMM MAE was 1.10% ± 0.90 (bias: 0.6% ± 1.3) for automatic versus manual 1a analysis, 
2.07% ± 1.4 (bias:-1.0% ± 2.3) for the manual intraobserver agreement and 3.36% ± 3.2 (bias: 
1.0% ± 4.6) for the manual interobserver agreement. The T/TMM measure correlation scores 
(0.92) were superior to both the intraobserver (0.74; P < .01) and interobserver (0.39; P < .01) 
agreement. For the LVMM measure, automatic method was not superior compared with human 
intra-and interobserver variabilities. 
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Figure 6 shows Bland-Altman plots for the main clinical parameters between automatic 
versus manual 1a, manual 1a versus manual 1b, and manual 1a versus manual 2. Bland-Altman 
plots show better agreement for the automatic versus manual performance than for the inter-and 
intraobserver performance for the T and T/TMM measures. 

Discussion 
The main findings of the study were that our model pipeline (a) provided accurate and 
reproducible results, matching the human performance for LV structures and trabeculations 
segmentations; (b) was a fast (5 seconds) and fully automatic segmentation tool; (c) had a similar 
accuracy for all cardiac phenotypes included; and (d) provided an automatic quality assessment 
of the predicted segmentation results. 

Data from multiple centers and imaging parameters were used in the training and testing 
datasets in the present study, as recommended by Bluemke et al (29). The training dataset 
showed an overrepresentation of the ETCM population (12.3%) that does not reflect the overall 
population for which the ETCM population has an estimated prevalence of 0.26% (30). This 
phenomenon could be explained because only tertiary reference centers were included in the 
study. This study examined most of the clinical situations where excessive trabeculations can be 
found. Regarding the clinical characteristics of healthy patients in the training dataset, the T/BSA 
was 4.52 g/m2 ± 2.69 was in line with that from Bentatou et al (4.9 g/m2 ± 2.4) (24). The overall 
measure was superior (5.39 g/m2 ± 2.69) due to the inclusion of DCM, HCM and mostly ETCM 
patients. 

Trabeculations have not been clearly defined in medical imaging and trabeculation 
segmentation is associated with poor interobserver reproducibility. Our method produced similar 
results to those of Bai et al concerning the LV cavity (0.96 ± 0.01 versus 0.94 ± 0.04) and LV 
myocardium segmentation (0.89 ± 0.03 versus 0.88 ± 0.03) (31). Bernard et al evaluated the 
performance of average deep learning based cardiac segmentation methods versus the 
Automated Cardiac Diagnosis Challenge ground-truth dataset (13). For the myocardium mass, 
they achieved an MAE of 10.4 g, in line with the presented results. The largest MAE for the 
LVMM was found in the HCM subgroup. This finding is expected, considering that an elevated 
total myocardial mass is the definitive criteria of this subgroup (Table 1). However, the 
automated measurements for the LVMM tend to be slightly underestimated compared with the 
manual measurements as the biases, which were all significant, were all negative for the overall 
dataset and all the subgroups. For the LVEDV measurement, we found an inferior MAE 
compared with Bernard et al (7.1 mL) for the average deep learning methods. Chaung et al 
evaluated the correlation between cardiac trabeculations and muscles and their impact on the LV 
anatomy and function but did not separate the papillary muscles from trabeculations in their 
measures (2). Lu et al achieved a global correlation coefficient between the measures derived 
from automated and manual segmentation of greater than 0.89 for LVEDV, and we found a 
correlation of 0.99 for the same measure (33). In the Bland-Altman analysis, there was good 
agreement between the measures of the clinical parameters with negligible bias. Lu et al 
achieved limits of agreement (± 1.96 SD) of ± 25 mL and 28.8 g for the LVEDV and LVMM, 
respectively, while we achieved limits of agreement of ± 5.8 mL and 7.3 g, respectively. 

The results concerning automatic quality control are comparable to those obtained by 
Robinson et al for the LVM and LVC with an MAE of 0.03 and a high binary threshold 
classification accuracy (98.3% for the LVM and 97.5% for the LVC) (27). Regarding the LVT 
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and LVPM segmentation labels, the literature offered no previous example of an automatic 
quality control method, and hence, we are unsure whether the methods that were successful for a 
larger class could also be successful for smaller and noisy classes. 

Trabeculations are normal components of the LV and discrimination between normal and 
excessive trabeculations remains challenging and controversial (34). Cardiac MRI has been 
indicated to be the best diagnostic tool to evaluate the distribution and measures of trabeculations 
(8). Kholi et al showed that segmental measurements of the trabeculation thickness in 
transthoracic US resulted in an overdiagnosis of ETCM (35). In a cardiac MRI study, more than 
40% of healthy individuals presented a trabeculated-over-compact-myocardium thickness ratio 
greater than 2.3 (36). However, Bentatou et al showed that trabeculations were not 
homogeneously distributed over the LV cavity and that quantification of the total amount of LV 
trabeculations was preferable to the thickness criteria (24). Lu et al published a fully automated 
LV segmentation and measurement method including the papillary muscles and trabeculations 
but without separating them (33). Hence, to quantify the total number of LV trabeculations by 
calculating the trabeculation mass, there was a need to measure these two distinct cardiac 
structures automatically on cardiac MRI. 

One of the major strengths of the presented pipeline is the minimal human interaction 
needed. The only human interaction is to load the short-axis MRI sequence into the pipeline 
interface, then the system automatically complete the evaluation of the first frame of each short-
axis cine cardiac MRI. In case of manual (visual) or automatic rejection of the segmentation 
results, physicians can directly perform manual segmentation on the cardiac MRI images with 
reference manual segmentation software (25). 

Our study had limitations. This study relied on retrospective data to train, validate, and 
test the deep learning algorithm. Only two cardiac MRI systems at 1.5 T from two different 
manufacturers were used in the present study. ED frame selection for segmentation may have 
varied between patients. Technical parameters, such as the Hausdorff distance, can also be used 
to strengthen the obtained results. However, because of anatomic particularities of trabeculations 
that have been described above, it did not seem relevant to use the Hausdorff distance in this 
case, and the Dice coefficient was the only metric used. LV trabeculation is a small structure 
with some amount of partial volume effect on cardiac MRI giving an inherent interobserver and 
intraobserver variability. We intend to teach the algorithm with the segmentation of only one 
expert reader, to avoid interobserver bias. The drawback of that choice is that we privilege the 
segmentation of the manual 1a observer. 

A fully automated deep learning based framework was proposed for segmentation of LV 
trabeculations and cardiac structures for short-axis ED cardiac MRI analysis including automatic 
quality control of the obtained segmentation results. The proposed automatic cardiac MRI 
analysis of trabeculations can be used in further research to help improve our understanding of 
excessive trabeculation cardiomyopathy. 
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Figure 1: Overview of the study design and data flow. DCM = dilated cardiomyopathy, 
ETC = excessive trabeculation cardiomyopathy, HCM = hypertrophic cardiomyopathy, 
QC = quality control. 

 

 

 

Figure 2: Left ventricle (LV) structures after manual reference segmentation. One mid 
ventricular end-diastolic short-axis cine cardiac MRI, using NCP processing software 
(23). (a) Epicardial border (blue layer), endocardial border (red layer), and the borders 
of the papillary muscles (yellow layer) is shown. (b) The trabeculation segmentation 
(light green) is shown. (c) LV labels for the same cardiac MRI: background (black); LV 
myocardium (dark gray); LV cavity (gray); LV trabeculations (light gray); LV papillary 
muscles (white). 
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Figure 3: Complete pipeline and model description in five steps. LVEDV = left 
ventricle end-diastolic volume, LVMM = left ventricle myocardial mass; T = trabeculation 
mass, PM = papillary muscles, T/TMM = trabeculation-mass-to-total-myocardial-mass 
ratio. 

 

Figure 4: Examples of the obtained automatic left ventricular segmentations 
compared with the cardiac MRI and manual reference segmentation for different cardiac 
phenotypes. Short-axis cardiac MRI (left), manual reference segmentation (middle), and 
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obtained automated segmentations predicted by the model (right) for the four main 
cardiac phenotypes. DCM = dilated cardiomyopathy, ETCM = excessive trabeculations 
cardiomyopathy, HCM = hypertrophic cardiomyopathy. 

 

Figure 5: Correlation of clinical parameters measures between manual and automatic 
on the testing dataset (n = 150). Blue line is the fitted regression line. Blue surface 
represent confidence bands around regression line. Blue cross represent paired t test 
for each value. LVEDV = left ventricle end-diastolic volume, LVMM = left ventricle 
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myocardial mass; T = trabeculation mass; T/TMM = trabeculation-mass-to-total-
myocardial-mass ratio. 

 

Figure 6: Bland-Altman analysis for the clinical parameters between the automatic 
and manual measurements. Evaluation between automatic versus manual 1a (left), 
manual 1a versus manual 1b (middle), and manual 1a versus manual 2 (right) on the 48 
patients randomly selected from the testing dataset. In each Bland-Altman plot, the x-
axis denotes the average of two measurements, and the y-axis is the difference 
between them. The blue dashed line denotes the mean difference (bias), and the two 
orange dashed lines denote ± 1.96 standard deviations from the mean. LVEDV = left 
ventricle end-diastolic volume, LVMM = left ventricle myocardial mass, T = trabeculation 
mass, T/TMM = trabeculation-mass-to-total-myocardial-mass ratio. 

Table 1 

Baseline Patient Characteristics for the Three Datasets 
Parameter HCM DCM ETCM Healthy Overall 

A. Training Dataset (n = 299) 
Total No. 72 19 39 169 229 
Age, yrs 53 ± 13 55 ± 13 44 ± 13 50 ± 13 50 ± 13 
No. Men 43 11 26 94 174 

LVEDV (mL) 150.5 ± 38.2 225.3 ± 113.4 175.3 ± 58.2 139.5 ± 36.4 151.6 ± 48.4 
LVEDV/BSA (mL/m2) 79.9 ± 17.4 115.0 ± 43.3 96.5 ± 27.0 77.9 ± 16.0 83.2 ± 23.0 
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LVMM (g) 168.1 ± 56.4 162.7 ± 45.0 112.9 ± 43.4 107.4 ± 31.1 126.3 ± 49.0 
LVMM/BSA (g/m2) 89.2 ± 28.0 87.2 ± 23.6 62.3 ± 21.1 59.6 ± 12.6 68.8 ± 23.2 

T (g) 10.5 ± 5.0 13.2 ± 7.6 14.4 ± 6.6 8.1 ± 3.6 9.8 ± 5.2 
T/BSA (g/m2) 5.6 ± 2.7 6.9 ± 3.3 8.0 ± 3.4 4.5 ± 1.8 5.4 ± 2.7 
T/TMM (%) 5.7 ± 2.3 6.9 ± 3.3 11.3 ± 4.5 6.6 ± 2.3 7.0 ± 3.2 

B. Testing Dataset (n = 150) 
Total No. 20 20 20 90 150 
Age, yrs 56 ± 15 54 ± 12 43 ± 15 45 ± 19 47 ± 17 
No. Men 16 10 11 53 90 

LVEDV (mL) 154.9 ± 38.7 237.7 ± 91.6 215.8 ± 130.4 159.4 ± 49.3 176.7 ± 76.4 
LVEDV/BSA (mL/m2) 80.3 ± 18.0 122.5 ± 39.5 111.0 ± 55.1 85.5 ± 24.6 93.1 ± 34.71 

LVMM (g) 176.1 ± 43.8 165.0 ± 52.1 146.6 ± 95.2 126.0 ± 37.0 140.6 ± 54.3 
LVMM/BSA (g/m2) 91.1 ± 19.6 85.3 ± 21.9 75.2 ± 40.0 67.3 ± 17.1 73.9 ± 23.9 

T (g) 14.4 ± 7.3 20.6 ± 10.6 27.7 ± 18.2 12.1 ± 5.5 15.6 ± 10.6 
T/BSA (g/m2) 7.4 ± 3.6 10.6 ± 5.2 14.3 ± 8.4 6.4 ± 2.8 8.2 ± 5.1 
T/TMM (%) 7.0 ± 2.6 10.3 ± 3.5 15.4 ± 5.4 8.1 ± 2.9 9.2 ± 4.2 

C. Reproducibility Dataset (n = 48) 
Total No. 8 5 5 30 48 
Age, yrs 57 ± 18 51 ± 17 32 ± 17 47 ± 19 44 ± 19 
No. Men 6 3 4 18 31 

LVEDV (mL) 150.39 ± 22.6 254.9 ± 91.0 158.5 ± 70.3 146.8 ± 41.5 159.8 ± 57.9 
LVEDV/BSA (mL/m2) 78.1 ± 11.1 126.5 ± 33.5 83.2 ± 30.3 79.2 ± 23.1 84.4 ± 27.1 

LVMM (g) 174.7 ± 45.6 180.9 ± 63.2 115.0 ± 41.0 137.4 ± 35.1 145.81 ± 44.4 
LVMM/BSA (g/m2) 90.4 ± 21.3 90.0 ± 24.2 61.2 ± 18.6 73.4 ± 16.1 76.7 ± 19.8 

T (g) 10.63 ± 4.2 15.84 ± 5.0 16.7 ± 6.7 10.2 ± 4.9 11.5 ± 5.4 
T/BSA (g/m2) 5.5 ± 2.2 8.7 ± 3.1 9.0 ± 3.5 5.5 ± 2.7 6.2 ± 3.0 
T/TMM (%) 5.4 ± 1.9 7.6 ± 0.8 11.9 ± 3.0 6.4 ± 2.2 6.9 ± 2.8 

Note.—The means ± SDs are reported. BSA = body surface areas, HCM = hypertrophic cardiomyopathy, DCM = 
dilated cardiomyopathy, ETCM = excessive trabeculations cardiomyopathy, LVEDV = left ventricular end-diastolic 
volume, LVMM = left ventricular myocardial mass, PM = papillary muscles mass, T = trabeculation mass, T/TMM 
= trabeculation-mass-to-total-myocardial-mass ratio. 

Table 2 

3D Dice MAE for the Automatic Quality Control Module 
Labels MAE Binary Accuracy 
LVM 0.03 ± 0.03 97.2% 
LVC 0.02 ± 0.02 96.5% 
LVT 0.05 ± 0.04 94.5% 
LVPM 0.05 ± 0.06 97% 

Note.—The means ± SDs of the metrics are reported. MAE = mean absolute error, LVC = left ventricular cavity, 
LVM = left ventricular myocardium; LVPM = left ventricular papillary muscles, LVT = left ventricular 
trabeculation. 

Table 3 

Model segmentation performance for the technical and clinical parameters. 
Auto versus Manual (n = 150) 

 
HCM (n = 20) DCM (n = 20) ETCM (n = 20) Healthy (n = 90) Overall (n = 150) 
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A. Technical Metric: Dice Coefficient 
LVC 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.02 0.96 ± 0.01 
LVM 0.91 ± 0.02 0.86 ± 0.02 0.88 ± 0.03 0.89 ± 0.03 0.89 ± 0.03 
LVPM 0.82 ± 0.05 0.79 ± 0.07 0.72 ± 0.19 0.79 ± 0.09 0.79 ± 0.11 
LVT 0.61 ± 0.07 0.62 ± 0.09 0.66 ± 0.08 0.62 ± 0.09 0.62 ± 0.08 
B. Clinical Parameters 
Left ventricular end-diastolic volume 
MAE (mL) 3.60 ± 3.3 8.90 ± 8.5 9.45 ± 7.5 4.90 ± 4.5 5.86 ± 5.8 
Bias (mL) 1.0 ± 4.8 2.7 ± 12.1 0.8 ± 12.2 0.2 ± 6.6 0.4 ± 8.3 
P value 0.37 0.58 0.6 0.99 0.84 
Correlation 0.99 0.99 0.99 0.99 0.99 
Left ventricular myocardial mass 
MAE (g) 13.15 ± 8.4 9.75 ± 6.7 10.82 ± 10.2 8.27 ± 6.1 9.46 ± 7.3 
Bias (g) 12.5 ± 9.4 8.6 ± 8.2 10.8 ± 10.2 3.5 ± 9.7 6.3 ± 10.2 
P value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
Correlation 0.98 0.99 0.99 0.97 0.99 
Papillary muscle mass 
MAE (g) 1.52 ± 1.1 1.45 ± 1.1 0.97 ± 0.7 1.39 ± 1.1 1.36 ± 1.1 
Bias (g) 0.9 ± 1.6 0.2 ± 1.9 0.1 ± 1.2 0.8 ± 1.7 0.6 ± 1.7 
P value 0.04 0.41 0.79 < 0.01 < 0.01 
Correlation 0.90 0.87 0.99 0.85 0.92 
Trabeculation mass 
MAE (g) 3.52 ± 3.1 5.19 ± 4.5 6.79 ± 5.0 2.60 ± 2.0 3.63 ± 3.4 
Bias (g) 2.8 ± 3.8 3.1 ± 6.2 3.7 ± 7.7 0.7 ± 3.2 1.7 ± 4.7 
P value < 0.01 0.04 0.06 0.02 < 0.01 
Correlation 0.90 0.82 0.92 0.83 0.90 
Trabeculation-mass-to-total-myocardial-mass ratio 
MAE (g) 1.32 ± 1.0 2.16 ± 1.3 2.94 ± 1.7 1.82 ± 1.5 1.95 ± 1.5 
Bias (g) 0.8 ± 1.5 0.9 ± 2.4 0.7 ± 3.4 0.3 ± 2.3 0.5 ± 2.4 
P value 0.05 0.14 0.37 0.18 0.01 
Correlation 0.83 0.74 0.80 0.66 0.83 

Note.—The means ± SDs of the metrics are reported. DCM = dilated cardiomyopathy, ETCM = excessive 
trabeculations cardiomyopathy, LVC = left ventricular cavity, LVM = left ventricular myocardium; LVPM = left 
ventricular papillary muscles, LVT = left ventricular trabeculation, MAE: mean absolute error. 
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Table 4 

Automatic Segmentation Performance Compared with Human Reproducibility  
Manual 1a versus Auto (n = 48) Manual 1a versus Manual 1b (n = 48) Manual 1a versus Manual 2 (n = 48) 

 
HCM 
(n = 
8) 

DCM 
(n = 
5) 

ETC
M 
(n = 
5) 

Healt
hy 
(n = 
30) 

Overa
ll 
(n = 
48) 

HCM 
(n = 
8) 

DCM 
(n = 
5) 

ETC
M 
(n = 
5) 

Healt
hy 
(n = 
30) 

Overa
ll 
(n = 
48) 

HCM 
(n = 
8) 

DCM 
(n = 
5) 

ETC
M 
(n = 
5) 

Healt
hy 
(n = 
30) 

Over
all 
(n = 
48) 

A. Technical Metric: Dice Coefficient 
LVC 0.96 ± 

0.01 
0.94 ± 
0.06 

0.96 ± 
0.01 

0.96 ± 
0.02 

0.96 ± 
0.02 

0.96 ± 
0.02 

0.97 ± 
0.01 

0.97 ± 
0.02 

0.96 ± 
0.01 

0.96 ± 
0.01 

0.96 ± 
0.02 

0.96 ± 
0.02 

0.97 ± 
0.03 

0.95 ± 
0.05 

0.96 
± 
0.04 

LVM 0.92 ± 
0.01 

0.87 ± 
0.04 

0.90 ± 
0.02 

0.90 ± 
0.02 

0.90 ± 
0.03 

0.94 ± 
0.04 

0.90 ± 
0.05 

0.91 ± 
0.05 

0.90 ± 
0.03 

0.91 ± 
0.04 

0.94 ± 
0.03 

0.90 ± 
0.06 

0.93 ± 
0.06 

0.88 ± 
0.06 

0.89 
± 
0.06 

LVPM 0.83 ± 
0.03 

0.79 ± 
0.06 

0.76 ± 
0.11 

0.81 ± 
0.06 

0.81 ± 
0.07 

0.83 ± 
0.04 

0.75 ± 
0.05 

0.78 ± 
0.11 

0.76 ± 
0.13 

0.77 ± 
0.11 

0.75 ± 
0.07 

0.72 ± 
0.10 

0.79 ± 
0.11 

0.72 ± 
0.08 

0.74 
± 
0.04 

LVT 0.66 ± 
0.05 

0.61 ± 
0.09 

0.72 ± 
0.08 

0.61 ± 
0.11 

0.63 ± 
0.10 

0.60 ± 
0.07 

0.58 ± 
0.05 

0.65 ± 
0.09 

0.56 ± 
0.09 

0.58 ± 
0.09 

0.46 ± 
0.12 

0.50 ± 
0.04 

0.56 ± 
0.09 

0.42 ± 
0.13 

0.44 
± 
0.09 

B. Clinical Parameters 
Left ventricular end-diastolic volume 
MAE 
(mL) 

4.4 ± 
4.5 

19.6 ± 
34.1 

4.3 ± 
3.5 

6.3 ± 
4.8 

7.1 ± 
11.7 

5.2 ± 
4.9 

7.8 ± 
3.0 

5.2 ± 
5.0 

4.5 ± 
3.3 

5 ± 
3.8 

7.2 ± 
6.2 

11.9 ± 
6.1 

3 ± 
1.2 

8.4 ± 
13.7 

8.04 
± 
11.3 

Bias 
(mL) 

0.5 ± 
6.5 

18.6 ± 
34.8 

4.3 ± 
3.5 

5.6 ± 
5.5 

6 ± 
12.3 

4.2 ± 
5.9 

3 ± 
8.5 

3 ± 
6.8 

1.5 ± 
5.4 

0.4 ± 
6.3 

1.5 ± 
9.8 

7.2 ± 
12.2 

1.7 ± 
3.0 

1.8 ± 
16.1 

1.4 
± 
13.8 

Left ventricular myocardial mass 
MAE 
(g) 

13.8 ± 
8.8 

17.4 ± 
14.9 

6.4 ± 
7.0 

9.9 ± 
7.7 

10.9 ± 
8.9 

5.4 ± 
4.6 

8.3 ± 
8.5 

7.7 ± 
7.1 

5 ± 
4.7 

5.67 ± 
5.3 

5.3 ± 
4.6 

5.9 ± 
3.9 

4.7 ± 
4.3 

9.2 ± 
11.1 

7.87 
± 9.2 

Bias 
(g) 

7.1 ± 
1 5.5 

0.0 ± 
24.5 

4.9 ± 
8.3 

9.1 ± 
8.6 

7.4 ± 
12.1 

5.4 ± 
4.6 

0.5 ± 
12.6 

0.4 ± 
11.2 

1.4 ± 
6.7 

1.8 ± 
7.6 

2 ± 
7.0 

4.6 ± 
5.7 

3 ± 
6.0 

6.2 ± 
13.1 

5 ± 
11.0 

Papillary muscle mass 
MAE 
(g) 

1.4 ± 
1.3 

2.5 ± 
3.1 

1.2 ± 
1.3 

1.3 ± 
1.3 

1.4 ± 
1.6 

1.5 ± 
1.2 

3.2 ± 
3.4 

1.5 ± 
1.7 

1.4 ± 
1.2 

1.6 ± 
1.6 

2.6 ± 
1.9 

2.4 ± 
2.2 

2.2 ± 
2.2 

2.8 ± 
1.5 

2.65 
± 1.7 

Bias 
(g) 

1.0 ± 
1.6 

2.3 ± 
3.3 

0.9 ± 
1.6 

0.3 ± 
1.8 

0.7 ± 
2.0 

1.5 ± 
1.2 

2.5 ± 
4.1 

1 ± 
2.1 

1 ± 
1.6 

1.2 ± 
1.9 

2.1 ± 
2.5 

2.4 ± 
2.2 

2.2 ± 
2.2 

2.8 ± 
1.5 

2.5 
± 1.8 

Trabeculation mass 
MAE 
(g) 

1.9 ± 
1.5 

1.9 ± 
1.6 

1.4 ± 
0.9 

1.7 ± 
1.3 

1.7 ± 
1.3 

3.3 ± 
2.5 

5.9 ± 
4.7 

4.8 ± 
2.6 

3 ± 
1.4 

3.54 ± 
2.4 

5.1 ± 
5.0 

8.7 ± 
2.0 

4 ± 
1.4 

0.9 ± 
4.9 

5.84 
± 4.5 

Bias 
(g) 

0.2 ± 
2.5 

0.9 ± 
2.5 

1.0 ± 
1.4 

0.5 ± 
2.1 

0.5 ± 
2.1 

2.6 ± 
3.3 

1.4 ± 
8.0 

1.7 ± 
5.6 

2.1 ± 
2.6 

1.7 ± 
3.9 

3.2 ± 
6.6 

2.5 ± 
9.5 

1.8 ± 
4.2 

0.9 ± 
7.6 

1 ± 
7.3 

Trabeculation-mass-to-total-myocardial-mass ratio 
MAE 
(%) 

0.8 ± 
0.8 

1.4 ± 
1.1 

1.3 ± 
0.5 

1.1 ± 
1.0 

1.1 ± 
0.9 

1.6 ± 
1.4 

3.5 ± 
3.1 

2.6 ± 
0.7 

1.9 ± 
0.9 

2.07 ± 
1.4 

2.4 ± 
2.3 

4.1 ± 
1.2 

2.5 ± 
1.4 

3.7 ± 
3.8 

3.36 
± 3.2 

Bias 
(%) 

0.3 ± 
1.1 

0.5 ± 
1.8 

1.2 ± 
0.5 

0.7 ± 
1.4 

0.6 ± 
1.3 

1.1 ± 
1.9 

1.5 ± 
4.7 

0.3 ± 
3.0 

1.1 ± 
1.8 

1 ± 
2.3 

1.4 ± 
3.1 

0.2 ± 
0.47 

1.1 ± 
2.9 

1.1 ± 
5.2 

1 ± 
4.6 

Note.—The means ± SDs of the metrics are reported. DCM = dilated cardiomyopathy, ETCM = excessive 
trabeculations cardiomyopathy, HCM = hypertrophic cardiomyopathy, LVC = left ventricular cavity, LVM = left 
ventricular myocardium, LVPM = left ventricular papillary muscles, LVT = left ventricular trabeculation, MAE = 
mean absolute error. 
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Appendix 
This appendix explains in detail the 5 steps of the proposed algorithm. 

Step 1: Basal to End-Apical LV Stack Selection.—A dedicated CNNs with a dedicated 
dataset was trained to classify whether each image as belonging to the LV basal to end-apical 
range in short-axis orientation or not. 

Step 2: LV Detection and Cropping.—To facilitate the visualization of the LV before 
segmentation, we trained a distinct DFCNNs to segment the LV as a whole in each image and 
then to extract a 128 × 128 pixel region around the computed center of the LV mass. 

Step 3: LV Structure Segmentation.—Automatic image segmentation was performed on 
cropped images to segment the LVM, LVC, LVPM, LVT, and background. The automated 
segmentations obtained were named Auto. 

Step 4: Automatic Quality Control.—An automatic quality control module was built to 
predict the automatic segmentation quality. 

Step 5: Clinical Parameters.—The last step of the pipeline is the automated computation 
of the clinical parameters from the predicted segmentation: LVEDV, LVMM, PM, T, and 
T/TMM. 
Appendix A 

Dataset 

A.1. Dataset for basal end-apical stack selection (step 1) 
To automatically detect the stacks of interest inside all the acquired stacks, we retrospectively 

selected 224 consecutive cardiac MRI examinations with their ED short-axis cine cardiac MRI 
images separated into those between the most basal slice and most apical slice and those outside 
of the left ventricle. A mostly basal slice was a slice that showed the LV myocardium extending 
over at least 50% of the myocardial circumference. A mostly apical slice was the last slice where 
the LV myocardium was seen. 

The data acquisition was performed between November 2018 and April 2019 from our 
institution. Inclusion criteria and exclusion criteria were similar to the training test. There was no 
cardiac phenotype classification for this dataset. Cardiac MRI examinations were performed on 
1.5 T Avanto scanner (Siemens Healthcare, Erlangen Germany) with the same technical 
parameters as described in the manuscript. The dataset was separated into 184 patients for 
training and validation and 40 for testing the model. 

A.2. Dataset for LV region of interest detection and cropping (step 2) 
The same dataset as in step 3 was used, except that each pixel in the dataset was classified as 

belonging to the LV or not, hence resulting in a pixel-wise binary classification problem. 

A.3. Dataset for LV structures segmentation (step 3) 
This dataset main characteristics are described in manuscript. 

Concerning patients characteristics, DCM was defined as dilation of the LV with cardiac 
dysfunction as described by Gulati et al (21). HCM was defined based on myocardial thickness 
on end-diastolic short-axis cardiac MRI of greater than 15 mm following the European Society 
of Cardiology recommendations (22). ET was defined according to the criteria outline by 
Petersen et al: double-layer myocardial aspect and a noncompacted layer over a compacted layer 
thickness of greater than 2.3 on the end-diastolic long axis (9). 

Concerning the Cardiac MRI characteristics. For the 1.5T Ingenia scanner (Philips Health 
System, Best, the Netherlands): in-plane spatial resolution was set between 2 mm2 and 2.35 mm2, 
the slice thickness was set to 8 mm, and the gap between slices was set to 0 mm. For the 1.5T 
Avanto scanner (Siemens Healthcare, Erlangen, Germany): in-plane spatial resolution was set 
between 1.37 mm2 and 1.48 mm2, the slice thickness was set to 6 mm, and the gap between slices 
was 0 mm. The flip angle and resolution were adapted to the morphologies of the patients. The 
acquisitions were electrocardiogram synchronized and were performed under breath-hold. The 
short-axis image stack consisted of 8 to 17 slices depending on the scanner, patient height, 
cardiac anatomy and morphology. Each cardiac slice consists of 30 time frames. 
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A.4. Dataset for segmentation automatic quality control (step 4) 
The dataset was built by training CNN (to see CNN used for step 2, refer to §B.2.) models with 

varying number of feature maps per convolutional layer, number of training epochs (1, 2, 10, 
100) and randomly choosing subsets from the dataset used in step 3 as training data. The 
resulting trained models were used to segment the 449 cardiac MRI sequences of the dataset 
used in step 3. To have a score-balanced dataset we computed the histogram of the Dice of all 
the predictions obtained from the different models and selected an equal number of predictions 
in each bin (corresponding to the minimum counts-per-bin) of the Dice value distribution for the 
LVT class for the following bins: [0, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.5], [0.5, 0.6], [0.7, 1]. 

The inputs are constructed as in Robinson et al where for each segmentation 5 one-hot 
encoded masks are generated for each class: background, LVM, LVC, LVT and LVMP and 
concatenated with the cardiac MRI input (27). 
Appendix B 

Networks Architecture 

B.1. Network architecture for basal end-apical stack selection (step 1) 
The 14-layers CNN used for basal end-apical stack selection is illustrated in Figure E1. 

It is composed of 4 convolution-convolution-max pooling blocks followed by one Dense 
layer with 1024 units, all with ReLU activations and with batch normalization used before every 
convolutional layer. The last layer is a Dense layer with one unit and sigmoid activation. It takes 
as input 128 × 128 images and returns a value between 0 and 1 that corresponds to the prediction 
of the probability for the input of belonging to the basal to end-apical range or not. 

B.2. Network architecture for LV region of interest detection and cropping (step 2) 
For LV detection, we used a Deep Fully Convolutional Neural Network (DFCNN), introduced 

by Khened et al (26). We refer to this architecture as 2DSegDFCNN . This network is almost 
identical to the network used by Khened et al (26) on the ACDC dataset, we only added a 
pooling step and used k = 12 feature maps per convolutional layer. The network takes as input 
256 × 256 images and returns 256 × 256 segmented maps where each pixel is predicted as 
belonging to the LV or not, as illustrated in Figure E2. 

A dense block (DB) is composed of several dense block layers, a composition of batch 
normalization (BN), exponential linear unit (ELU), 3 × 3 convolution and a dropout layer with a 
drop-out rate of P = .2. Our network has 4 dense blocks in the downsampling path with, in the 
ascending order, two, three, four and five dense block layers; bottleneck dense block has 6 DB 
layers; the dense blocks properties in the up-sampling path are mirrored from the down-sampling 
path. Transition down (TD) block reduces the spatial resolution of the feature maps as the depth 
increases and is composed of BN, ELU, 1 × 1 convolution, dropout (P = .2) and 2 × 2 max-
pooling layers. A transition up (TU) increases the resolution of the feature maps and is composed 
of a 3 × 3 transposed convolution with a stride of 2. Each convolutional layer in the network has 
k = 12 feature maps for step 2. 

B.3. Networks architecture for LV structures segmentation (step 3) 
For the segmentation of the LV structures, we combined a 2D and a 3D network, both 

illustrated in Figure E3: 

One 2DSegDFCNN  as in step 2 except it has k = 36 feature maps per convolutional layer. 

It also takes as input 128 × 128 images cropped around the LV and returns 128 × 128 
segmented maps where each pixel is predicted as belonging to background, LVM, LVC, LVT or 
LVPM. 

One network referred to as 3DSegDFCNN . It differs from 2DSegDFCNN  only because the 
convolutional layers have 3 × 3 × 3 filters and the inputs are also in 3D. The inputs of 

3DSegDFCNN  correspond to 3 consecutive (in a patient, slice-wise) 128 × 128 images 
concatenated together, it then returns the corresponding segmented map, were each voxel is 
predicted as belonging to background, LVM, LVC, LVT or LVPM. 
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At test time, for each slice-level image, the corresponding output of the softmax layers of 
the two networks are added together and the argmax is taken on the last axis to obtain 128 × 128 
segmented maps. 

B.4. Networks architecture for segmentation quality control (step 4) 
Two networks with the same architecture (referred to as QCDFCNN ) were used for 

segmentation quality prediction. 
Both networks take as input 128 × 128 × 6 tensors, corresponding to the concatenation of 

a 128 × 128 cropped around the LV image and 5 one-hot encoded 128 × 128 masks which are 
generated, given a segmentation, for each class: background, LVM, LVC, LVT and LVMP. Both 
networks return a vector of length 5. 

For a given input tensor, one network predicts the Dice value for each class while the 
other predicts the MVSF value for each class. 

QCDFCNN  differs from 2DSegDFCNN  in the following way: the last 1 × 1 convolutional 
layer is replaced by an average pooling layer with a pooling size of 128 × 128 followed by a 
dense layer with 5 units and a sigmoid activation to predict quality values between 0 and 1. An 
illustration is given in Figure E4. 

At test time, the Dice value predictions for each class at patient level (3D) are 
reconstructed from the predicted Dices and MVSF values for each 2D image and corresponding 
segmentation in the sequence of a patient, this mathematical reconstruction is detailed in 
Appendix E.4. 
Appendix C 

Preprocessings 

C.1. Image preprocessing algorithms 
Three different algorithms were used for this step, illustrated for a cardiac MRI input on 

Figure E5. 
Algorithm 1. Min-max normalization: 

min
norm

max min

X XX
X X





, where X is the original voxel intensity in an image, the minimum 

and maximum values are taken with regard to all voxel intensities in the image. 
Algorithm 2. Contrast Limited Adaptive Histogram Equalization (CLAHE). 
Local contrast enhancement, that uses histograms computed over different tile regions of 

the image. It was implemented as in the skimage Python library with default parameters. It was 
always applied on the output of the min max normalization. 

Algorithm 3. Global histogram equalization with 256 bins. 
As implemented in the skimage Python library. Always applied on the output of the min 

max normalization. 

C.2. Preprocessing for basal end-apical stack selection (step 1) 
The images were first resized to a 128 × 128 resolution and Algorithm 2 was applied. 

C.3. Preprocessing for region of interest detection (step 2) 
Algorithms 1, 2 and 3 were applied on original images separately and their outputs 

concatenated together, resulting in 3-channels 2D images. The resulting images were resized to 
a 256 × 256 × 3 resolution, while manually annotated maps were resized to a 256 × 256 
resolution. If an image had a horizontal or a vertical resolution smaller than 256 zero padding 
was used. If an image had a horizontal or a vertical resolution larger than 256 then center 
cropping was used. In each manual segmentation, all the pixels belonging to the LV region were 
converted to have the same value. 

C.4. Preprocessing for LV structures segmentation (step 3) 
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Algorithms 1, 2 and 3 were applied on cropped around the LV 128 × 128 images separately 
and their outputs concatenated together, resulting in 3-channels 2D images. The resulting 
images had a 128 × 128 × 3 resolution, while manually annotated maps had a 128 × 128 
resolution. 

C.4. Preprocessing for segmentation quality control (step 4) 
As said in §B.4. the networks in this step take as input 128 × 128 × 6 tensors, corresponding 

to the concatenation of a 128 × 128 cropped around the LV image, on which only Algorithm 2 
was applied, and 5 one-hot encoded 128 × 128 masks. 
Appendix D 

Training Parameters 

D.1. Training parameters for basal end-apical stack selection (step 1) 
Binary cross entropy loss function was used. Training was performed for 300 epochs with the 

Adam optimizer and a learning rate of 0,001. Random flips, croppings, Gaussian blurs and 
affine transformations where applied during training. The best model was selected based on the 
loss on the validation set. 

D.2. Training parameters for region of interest detection (step 2) 
The Dice loss, as defined by Milletari et al was used (38). The network was trained for 150 

epochs with the Adam optimizer with a learning rate of 0,001. Random rotations between-1 and 
1 radius were applied during training. The network which gave the smallest loss on the 
validation set was kept. 

D.3. Training parameters for LV structures segmentation (step 3) 
Weighted Dice-cross entropy loss, as defined by Khened et al was used for both networks used 

in this step (26). The 2D network and 3D network were trained for 400 and 200 epochs 
respectively both with the Adam optimizer with a learning rate of 0,001. Random rotations 
between-1 and 1 radius and random croppings were applied during training. The networks 
which gave the smallest loss on the validation set were kept. 

D.4. Training parameters for segmentation quality control (step 4) 
Mean squared error loss was used for both networks used in this step. Both networks were 

trained for 160 epochs with the Adam optimizer and a learning rate of 0,001. The networks 
which gave the smallest loss on the validation set were kept. 
Appendix E 

Postprocessings 

E.1. Post processing for basal end-apical stack selection (step 1) 
At test time, all the images in the sequence of a patient are classified as belonging to the basal 

to end-apical range or not. If a given image was classified as not belonging to the range of 
interest while the previous image and the next image in the sequence were classified as 
belonging to it, this given image will be classified as belonging to the basal to end-apical range. 

E.2. Post processing for region of interest detection (step 2) 
No post processing is applied on the predicted segmentation maps. 

The center of mass of the pixels predicted as belonging to the LV is computed. 
The distance between all predicted centers in the slices of a patient are computed to 

detect the 3 centers that are the closest to each other. The mean of those 3 centers is computed 
and taken as a reference center, also the mean distance of those 3 points to the reference center is 
taken as the reference distance 

Then a post processing is applied is the following way: for each predicted center in a 
patient if the distance of that center to the reference center is superior to 23 times the reference 
distance, then this center is rejected and the reference center is taken instead for that slice. 
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Those centers are then used to obtain centered around the LV images. 

E.3. Post processing for LV structures segmentation (step 3) 
Slice-wise 2D connected component analysis was made and only one (the largest) connected 

component of the nonbackground predicted pixels is kept as nonbackground. 

E.4. Post processing for segmentation quality control (step 4) 
No post processing is done on the predictions for this step. 

Appendix F 

Results 

F.1. Results for basal end-apical stack selection (step 1) 
For each patient we computed the patient-level accuracy by dividing the number of correctly 

predicted slices by the total number of slices for that patient. 
We report a mean patient accuracy of 95.4% for the 40 patients in the test set for step 1. 
Additionally the average number of slices that were classified differently by the human 

operator and the CNN on our test set was 0.675, for an average number of slices per patient of 
14.3. 

The majority (55%) of the patients in the test set had no difference with the human 
operator. 

F.1. Results for region of interest detection (step 2) 
We report a mean Euclidean distance between the predicted centers and labeled centers of 

1.25 pixels (1.41 without postprocessing), standard deviation of 1.87 (3.45 without 
postprocessing) for the 1578 2D images composing the 150 patients in the testing for step 2. 

For all the 2D images, 100% of the LV were completely inside the 128 × 128 square 
centered on the predicted center of mass. 
Appendix G 

Additional Information 

G.1. How the cropped around the LV images are obtained (step 2) 
To obtain cropped around the LV 128 × 128 images from the 256 × 256 segmentation maps, 

the center of mass of the pixels classified as belonging to the LV is computed and a 128 × 128 
patch centered on it is extracted. 

G.2. How the patient level (3D) Dice values are obtained (step 4) 
Let suppose X  and Y  are two 3D regions with n  stacks, or equivalently   1,i i n

X x


  and 

  1,i i n
Y y


  where ix  and iy  are 2D regions. 

Therefore we can express the Dice between X  and Y  as: 

 
2

,
X Y

Dice X Y
X Y





. 

When we only have the segmentation of a given cardiac MRI sequence and not the 
manual segmentations considered as ground truth, it is similar to get   1,i i n

X x


  without having 

  1,i i n
Y y


  in this context. 

One model denoted as 1M  is used to estimate  ,i iDice x y  from ix  and related cardiac 
MRI 

ixmri : 

   1 , ,
ii x i iM x mri Dice x y

. 
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A second model denoted as 2M  is used to estimate    2
, i i

i i
i i

x y
MVSF x y

x y





: 

   2 , ,
ii x i iM x mri MVSF x y

. 

Finally predictions of the 3D Dice are recovered: 


 



2

,
X Y

Dice X Y
X Y






, 

with 1,
i

i n

X x


 
, 

 

1,
i

i n

Y y


 
, 


 



1,

1 ,
2 i i i i

i n

X Y Dice x y x y


 
  

 
 , and 

 
 


 

2 ,

2 ,

i i
i i

i i

MVSF x y
y x

MVSF x y





. 

 

 
Figure E1: Illustration of 14-layer CNN architecture developed for step 1. C: convolutional 
layer; MP: max pooling; D: dense layer. 
 
 

 
Figure E2: Illustration of CNN architecture developed for step 2. Purple line represents a 
concatenation. Blue line represents a projection and addition. 
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Figure E3: Illustration of both 2D and 3D CNN architecture developed for step 3. Purple line 
represents a concatenation. Blue line represents a projection and addition. 

 
Figure E4: Illustration of CNN architecture developed for step 4. Purple line represents a 
concatenation. Blue line represents a projection and addition. 

 
Figure E5: The three algorithms in ascending order and their concatenation together on a single 
end-diastolic short-axis cardiac MRI (from left to right). 

 




